专业 靠谱 的软件外包伙伴

您的位置:首页 > 新闻动态 > 基于Azure搭建PredictionIO和Spark的软件开发成果——推荐引擎服务

基于Azure搭建PredictionIO和Spark的软件开发成果——推荐引擎服务

2016-08-26 16:17:47

1. 在Azure构建Ubuntu 16.04虚拟机

假设前提条件您已有 Azure 帐号,登陆 Azure https://portal.azure.com 。 
点击左上部的 +New 按钮,在搜索框中输入 Ubuntu ,或者点击 Virtual Machine 选择 Ubuntu Server 14.04 LTS,然后点击 Create 创建虚拟机。

创建完成虚拟机后,在虚拟机的设置中找到 Azure 为其分配的 IP 地址,通过 Bitvise SSH Client 远程登陆虚拟机开始快速搭建推荐引擎服务之旅。

2. 以 PredictionIO 源码编译的方式安装

之所以本文以源码编译的方式安装 PredictionIO ,是因为其他方式我都未尝试成功。

2.1 编译

Run the following to download and build Apache PredictionIO (incubating) from its source code.

$ git clone https://github.com/apache/incubator-predictionio.git
$ cd incubator-predictionio
$ git checkout master
$ ./make-distribution.sh
  • 		1
  • 2
  • 3
  • 4

You should see something like the following when it finishes building successfully.

… PredictionIO-0.9.6/sbt/sbt PredictionIO-0.9.6/conf/  PredictionIO-0.9.6/conf/pio-env.sh PredictionIO binary distribution  created at PredictionIO-0.9.6.tar.gz Extract the binary distribution  you have just built.

$ tar zxvf PredictionIO-0.9.6.tar.gz
  • 		1

2.2 安装依赖

Let us install dependencies inside a subdirectory of the Apache PredictionIO (incubating) installation. By following this convention, you can use Apache PredictionIO (incubating)’s default configuration as is.

$ mkdir PredictionIO-0.9.6/vendors
  • 		1

2.3 安装Spark依赖包

Apache Spark is the default processing engine for PredictionIO. Download and extract it.

$ wget http://d3kbcqa49mib13.cloudfront.net/spark-1.5.1-bin-hadoop2.6.tgz
$ tar zxvfC spark-1.5.1-bin-hadoop2.6.tgz PredictionIO-0.9.6/vendors
  • 		1
  • 2

If you decide to install Apache Spark to another location, you must edit PredictionIO-0.9.6/conf/pio-env.sh and change the SPARK_HOME variable to point to your own Apache Spark installation.

2.4 数据存储

官方给的例子是采用 PostgreSQL 或者Hbase + Elasticsearch,我选择 MySQL 作为数据存储,因为在将来的数据可视化方面会采用 Caravel 自动化生成仪表板展现数据,在后续的文章中我会再详细介绍这方面。

在mysql官方网站下载 mysql-connector-java-5.1.37.jar 并保存至 PredictionIO-0.9.6/lib 文件夹中。  修改pi配置文件 pio-env.sh

#!/usr/bin/env bash 

# Copy this file as pio-env.sh and edit it for your site's configuration. 

# PredictionIO Main Configuration 
# 
# This section controls core behavior of PredictionIO. It is very likely that 
# you need to change these to fit your site. 

# SPARK_HOME: Apache Spark is a hard dependency and must be configured. 
SPARK_HOME=$PIO_HOME/vendors/spark-1.5.1-bin-hadoop2.6 

#POSTGRES_JDBC_DRIVER=$PIO_HOME/lib/postgresql-9.4-1204.jdbc41.jar 
MYSQL_JDBC_DRIVER=$PIO_HOME/lib/mysql-connector-java-5.1.37.jar 

# ES_CONF_DIR: You must configure this if you have advanced configuration for 
# your Elasticsearch setup. 
# ES_CONF_DIR=/opt/elasticsearch 

# HADOOP_CONF_DIR: You must configure this if you intend to run PredictionIO 
# with Hadoop 2. 
# HADOOP_CONF_DIR=/opt/hadoop 

# HBASE_CONF_DIR: You must configure this if you intend to run PredictionIO 
# with HBase on a remote cluster. 
# HBASE_CONF_DIR=$PIO_HOME/vendors/hbase-1.0.0/conf 

# Filesystem paths where PredictionIO uses as block storage. 
PIO_FS_BASEDIR=$HOME/.pio_store 
PIO_FS_ENGINESDIR=$PIO_FS_BASEDIR/engines 
PIO_FS_TMPDIR=$PIO_FS_BASEDIR/tmp 

# PredictionIO Storage Configuration 
# 
# This section controls programs that make use of PredictionIO's built-in 
# storage facilities. Default values are shown below. 
# 
# For more information on storage configuration please refer to 
# https://docs.prediction.io/system/anotherd 
# Storage Repositories 

# Default is to use PostgreSQL 
PIO_STORAGE_REPOSITORIES_METADATA_NAME=pio_meta 
PIO_STORAGE_REPOSITORIES_METADATA_SOURCE=MYSQL 

PIO_STORAGE_REPOSITORIES_EVENTDATA_NAME=pio_event 
PIO_STORAGE_REPOSITORIES_EVENTDATA_SOURCE=MYSQL 

PIO_STORAGE_REPOSITORIES_MODELDATA_NAME=pio_model 
PIO_STORAGE_REPOSITORIES_MODELDATA_SOURCE=MYSQL 

# Storage Data Sources 

# PostgreSQL Default Settings 
# Please change "pio" to your database name in PIO_STORAGE_SOURCES_PGSQL_URL 
# Please change PIO_STORAGE_SOURCES_PGSQL_USERNAME and 
# PIO_STORAGE_SOURCES_PGSQL_PASSWORD accordingly 
#PIO_STORAGE_SOURCES_PGSQL_TYPE=jdbc 
#PIO_STORAGE_SOURCES_PGSQL_URL=jdbc:postgresql://localhost/pio 
#PIO_STORAGE_SOURCES_PGSQL_USERNAME=pio 
#PIO_STORAGE_SOURCES_PGSQL_PASSWORD=pio 

# MySQL Example 
PIO_STORAGE_SOURCES_MYSQL_TYPE=jdbc 
PIO_STORAGE_SOURCES_MYSQL_URL=jdbc:mysql://10.18.218.9:13306/xuesongpio 
PIO_STORAGE_SOURCES_MYSQL_USERNAME=root 
PIO_STORAGE_SOURCES_MYSQL_PASSWORD=****** 

# Elasticsearch Example 
# PIO_STORAGE_SOURCES_ELASTICSEARCH_TYPE=elasticsearch 
# PIO_STORAGE_SOURCES_ELASTICSEARCH_CLUSTERNAME=<elasticsearch_cluster_name> 
# PIO_STORAGE_SOURCES_ELASTICSEARCH_HOSTS=localhost 
# PIO_STORAGE_SOURCES_ELASTICSEARCH_PORTS=9300 
# PIO_STORAGE_SOURCES_ELASTICSEARCH_HOME=$PIO_HOME/vendors/elasticsearch-1.4.4 

# Local File System Example 
# PIO_STORAGE_SOURCES_LOCALFS_TYPE=localfs 
# PIO_STORAGE_SOURCES_LOCALFS_PATH=$PIO_FS_BASEDIR/models 
atastore/ 

# HBase Example 
# PIO_STORAGE_SOURCES_HBASE_TYPE=hbase 
# PIO_STORAGE_SOURCES_HBASE_HOME=$PIO_HOME/vendors/hbase-1.0.0 
  • 		1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83

2.5声明 PrecidtionIO 和 Java 的环境变量

我是在 /root/.bahsrc 里增加如下代码:

PIO_HOME=/root/PredictionIO-0.9.6 
JAVA_HOME=/usr/lib/jvm/java-8-oracle 
JRE_HOME=$JAVA_HOME/jre 
PATH=$PATH:$PIO_HOME/bin:$JAVA_HOME/bin:$JRE_HOME/bin 
export PIO_HOME 
export JAVA_HOME 
export PATH 
  • 		1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

3. 创建推荐引擎服务

3.1 启动 PredictionIO Event Server

因为我在运行 PredictionIO 过程中发现它还是挺吃内存的,不管是 PredictionIO 还是 Spark,因此我特别分配的16的内存运行 Event server

JAVA_OPTS=-Xmx16g bin/pio eventserver & 
  • 		1

3.2 启动 Spark

通过 PredictionIO 内置的脚本启动 Spark 进行模型训练时总是出现问题,所以采用手动启动 Spark 集群的方式规避此问题。

You can start a standalone master server by executing:

PredictionIO-0.9.6/vendors/spark-1.5.1-bin-hadoop2.6/sbin/start-master.sh
  • 		1

Once started, the master will print out a spark://HOST:PORT URL for itself, which you can use to connect workers to it, or pass as the “master” argument to SparkContext. You can also find this URL on the master’s web UI, which is http://localhost:8080 by default.  Similarly, you can start one or more workers and connect them to the master via:

./sbin/start-slave.sh <master-spark-URL>
  • 		1

PredictionIO-0.9.6/vendors/spark-1.5.1-bin-hadoop2.6/sbin/start-slave.shspark://localhost:8080
  • 		1

Once you have started a worker, look at the master’s web UI (http://localhost:8080 by default). You should see the new node listed there, along with its number of CPUs and memory (minus one gigabyte left for the OS).  这里写图片描述

3.3 Create a new Engine from an Engine Template

Now let’s create a new engine called MyRecommendation by downloading the Recommendation Engine Template. Go to a directory where you want to put your engine and run the following:

$ pio template get PredictionIO/template-scala-parallel-recommendation MyRecommendation
$ cd MyRecommendation
  • 		1
  • 2

A new directory MyRecommendation is created, where you can find the downloaded engine template.

3.4 Generate an App ID and Access Key

You will need to create a new App in PredictionIO to store all the data of your app. The data collected will be used for machine learning modeling.  Let’s assume you want to use this engine in an application named “MyApp1”. Run the following to create a new app “MyApp1”:

$ pio app new MyApp1
  • 		1

You should find the following in the console output:

… [INFO] [App]InitializedEventStoreforthisappID:1.[INFO][Ap返回首页] [打印] [返回上页]   下一篇